Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Nat Commun ; 15(1): 3205, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615015

ABSTRACT

Defence against pathogens relies on intracellular nucleotide-binding, leucine-rich repeat immune receptors (NLRs) in plants. Hormone signaling including abscisic acid (ABA) pathways are activated by NLRs and play pivotal roles in defence against different pathogens. However, little is known about how hormone signaling pathways are activated by plant immune receptors. Here, we report that a plant NLR Sw-5b mimics the behavior of the ABA receptor and directly employs the ABA central regulator PP2C-SnRK2 complex to activate an ABA-dependent defence against viral pathogens. PP2C4 interacts with and constitutively inhibits SnRK2.3/2.4. Behaving in a similar manner as the ABA receptor, pathogen effector ligand recognition triggers the conformational change of Sw-5b NLR that enables binding to PP2C4 via the NB domain. This receptor-PP2C4 binding interferes with the interaction between PP2C4 and SnRK2.3/2.4, thereby releasing SnRK2.3/2.4 from PP2C4 inhibition to activate an ABA-specific antiviral immunity. These findings provide important insights into the activation of hormone signaling pathways by plant immune receptors.


Subject(s)
Abscisic Acid , Signal Transduction , Inhibition, Psychological , Protein Domains , Hormones
2.
Pest Manag Sci ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676556

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that play a pivotal role in antiviral infection. The miR184-3p has been identified to promote rice black streaked dwarf virus (RBSDV) infection in vector Laodelphax striatellus, whether it targets other genes of L. striatellus to modulate RBSDV propagation remains unknown. RESULTS: We first analyzed the expression profiles of miR184-3p and its role in regulating RBSDV infection in L. striatellus. Then the candidate genes expression of miR184-3p were systemically analyzed with gain and loss function of miR184-3p, and the interaction of candidate gene, ecdysone inducible protein 78 (Eip78) with miR184-3p was verified by dual luciferase reporter assay. We found Eip78 is evolutionary conserved among agricultural pests and predominantly expressed in the central nervous system (CNS) of L. striatellus. Knockdown of Eip78 effectively increased RBSDV propagation and transmission. Blockade with Eip78 antibody or injection with Eip78 protein could significantly regulate RBSDV infection. Further analysis revealed that knockdown of Eip78 specifically suppresses RBSDV infection in the head part but not in the body part of L. striatellus. Besides, knockdown of ecdysone receptor (EcR) notably restricted Eip78 expression and increased RBSDV accumulation in L. striatellus. CONCLUSIONS: Taken together, we identified a novel target gene of miR184-3p, Eip78, a member of the ecdysone signaling pathway, and revealed the anti-RBSDV role of Eip78 in the CNS of L. striatellus. These results shed light on the interaction mechanisms of miRNAs, virus and ecdysone signaling pathway in insect vector. © 2024 Society of Chemical Industry.

3.
Nat Commun ; 15(1): 1512, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374204

ABSTRACT

This was a single-arm, multicenter phase 2 clinical trial (ChiCTR1900021726) involving advanced squamous non-small cell lung cancer (sq-NSCLC) patients undergoing 2 cycles of nab-paclitaxel/carboplatin and sintilimab (anti-PD-1), followed by sintilimab maintenance therapy. The median progression-free survival (PFS) was 11.4 months (95% CI: 6.7-18.1), which met the pre-specified primary endpoint. Secondary endpoints included objective response rate reaching 70.5% and a disease control rate of 93.2%, with a median duration of response of 13.6 months [95% CI: 7.0-not evaluable (NE)]. The median overall survival was 27.2 months (95% CI: 20.2-NE) with treatment-related adverse events grades ≥3 occurring in 10.9% of patients. Predefined exploratory endpoints comprised relationships between biomarkers and treatment efficacy, and the association between circulating tumor DNA (ctDNA) dynamics and PFS. Biomarker analysis revealed that the breast cancer gene 2, BMP/Retinoic Acid Inducible Neural Specific 3, F-box/WD repeat-containing protein 7, tyrosine-protein kinase KIT and retinoblastoma 1 abnormalities led to shorter PFS, while ctDNA negative at baseline or clearance at 2 cycles of treatment was associated with longer PFS (18.1 vs. 4.3 months). Taken together, sintilimab in combination with 2 cycles of nab-paclitaxel/carboplatin treatment produced encouraging PFS and better tolerability as first-line treatment for advanced sq-NSCLC.


Subject(s)
Antibodies, Monoclonal, Humanized , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carboplatin/therapeutic use , Carboplatin/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics
4.
Viruses ; 16(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38257797

ABSTRACT

MicroRNAs (miRNAs) are non-coding RNAs, which, as members of the RNA interference pathway, play a pivotal role in antiviral infection. Almost 80% of plant viruses are transmitted by insect vectors; however, little is known about the interaction of the miRNAs of insect vectors with plant viruses. Here, we took rice black-streaked dwarf virus (RBSDV), a devastating virus to rice production in eastern Asia, and the small brown planthopper, (SBPH, Laodelphax striatellus) as a model to investigate the role of microRNA750-3p (miR750-3p) in regulating viral transmission. Our results showed that Ls-miR750-3p was downregulated in RBSDV-infected SBPH and predominately expressed in the midgut of SBPH. Injection with miR750-3p agomir significantly reduced viral accumulation, and the injection with the miR750-3p inhibitor, antagomir-750-3p, dramatically promoted the viral accumulation in SBPH, as detected using RT-qPCR and Western blotting. The processing of precursor 7 (POP7), a subunit of RNase P and RNase MRP, was screened, identified, and verified using a dual luciferase reporter assay as one target of miR750-3p. Knockdown of POP7 notably increased RBSDV viral propagation in SBPH and then increased the viral transmission rate by SBPH. Taken together, our data indicate that miR750-3p targets POP7 to suppress RBSDV infection in its insect vector. These results enriched the role of POP7 in modulating virus infection in host insects and shared new insight into the function of miRNAs in plant virus and insect vector interaction.


Subject(s)
Hemiptera , MicroRNAs , Plant Viruses , Animals , Plant Viruses/genetics , Antagomirs , MicroRNAs/genetics
5.
Viruses ; 15(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38005916

ABSTRACT

Virus coat protein (CP)-mediated resistance is considered an effective antiviral defense strategy that has been used to develop robust resistance to viral infection. Rice stripe virus (RSV) causes significant losses in rice production in eastern Asia. We previously showed that the overexpression of RSV CP in Arabidopsis plants results in immunity to RSV infection, using the RSV-Arabidopsis pathosystem, and this CP-mediated viral resistance depends on the function of DCLs and is mostly involved in RNA silencing. However, the special role of DCLs in producing t-siRNAs in CP transgenic Arabidopsis plants is not fully understood. In this study, we show that RSV CP transgenic Arabidopsis plants with the dcl2 mutant background exhibited similar virus susceptibility to non-transgenic plants and were accompanied by the absence of transgene-derived small interfering RNAs (t-siRNAs) from the CP region. The dcl2 mutation eliminated the accumulation of CP-derived t-siRNAs, including those generated by other DCL enzymes. In contrast, we also developed RSV CP transgenic Arabidopsis plants with the dcl4 mutant background, and these CP transgenic plants showed immunity to virus infection and accumulated comparable amounts of CP-derived t-siRNAs to CP transgenic Arabidopsis plants with the wild-type background except for a significant increase in the abundance of 22 nt t-siRNA reads. Overall, our data indicate that DCL2 plays an essential, as opposed to redundant, role in CP-derived t-siRNA production and induces virus resistance in RSV CP transgenic Arabidopsis plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Tenuivirus , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/virology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified , RNA Interference , RNA, Double-Stranded/metabolism , RNA, Small Interfering/genetics , Tenuivirus/genetics
6.
Plant Dis ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157092

ABSTRACT

Tomato mottled mosaic virus (ToMMV) was first identified in tomato in Mexico (Li et al. 2013). It belongs to the genus Tobamovirus and family Virgaviridae, and is a positive-sense single-stranded RNA virus. The viral genome contains about 6400 nucleotides, encoding four proteins, including the 126 K protein, 183 K protein, movement protein (MP) and coat protein (CP) (Tu et al. 2021). ToMMV mainly poses a serious risk to solanaceous crops. The virus-infected plants appear stunted growth and top necrosis, and the disease leaves show mottled, shrinkage and necrosis symptoms, resulting in a significant decline in tomato fruit yield and quality (Li et al. 2017; Tu et al. 2021). Chinese snake gourd (Trichosanthes kirilowii Maxim) is a perennial climbing herb in the family Cucurbitaceae, and the fruit, seed, peel and root can all be used as traditional Chinese medicine. In May of 2021, twenty-seven symptomless seedlings (developed from tissue culture plantlets) were randomly collected from nursery in Fengyang, Anhui Province. Total RNA of each sample was extracted, and RT-PCR was performed using degenerate tobamovirus primers Tob-Uni1 (5'-ATTTAAGTGGASGGAAAAVCACT-3') and Tob-Uni2 (5'-GTYGTT GATGAGTTCRTGGA-3') (Letschert et al. 2002). Amplicons with expected size were obtained from 6 of 27 samples and sequenced. Alignment results showed that the nucleotide sequence identities ranged from 98.7 to 100% with all ToMMV isolates deposited in NCBI GenBank. Then, ToMMV coat protein (CP) gene was amplified using specific primers CP-F (5'-ATGTCTTACGCTATTACTT CTCCG-3') and CP-R (5'-TTAGGACGCTGGCGCAGAAG-3'). The CP fragment was obtained and sequenced. Sequence alignment indicated that CP sequence of isolate FY (GenBank accession no. ON924176) exhibited a 100% identity with ToMMV isolate LN (MN853592.1). The anti-ToMMV polyclonal antibody (PAb) was prepared by the author (S.L.) by immunizing rabbit with purified virus from Nicotiana benthamiana, and serological tests (dot-enzyme linked immunosorbent assay, Dot-ELISA) of RNA-positive T. kirilowii leaf samples using anti-ToMMV PAb were also positive. To fulfill a Koch's postulate, a pure culture of ToMMV was obtained from N. benthamiana using infectious cDNA clone of ToMMV (Tu et al. 2021), and then healthy T. kirilowii plants were mechanically inoculated with a prepared inoculum from ToMMV-infected N. benthamiana, as described previously (Sui et al. 2017). T. kirilowii seedlings showed chlorosis and leaf tip necrosis symptoms at 10 and 20 day post-inoculation respectively, and ToMMV infection on symptomatic plants was also verified by RT-PCR detection using primers CP-F and CP-R. These results demonstrated that T. kirilowii is a host of ToMMV under natural conditions, which might threaten the production of this medicinal plant. The seedlings from nursery appeared to be asymptomatic, but the plants showed chlorosis and necrosis symptoms after indoor inoculation. In qRT-PCR analysis, viral accumulation level in greenhouse-inoculated plants was a 25.6-fold of that in field-collected samples, which may be the reason of different symptom expression between field samples and inoculated samples. ToMMV has now been detected from the solanaceous (tomato, pepper and eggplant) and leguminous (pea) crops in the field (Li et al. 2014; Ambrós et al. 2017; Zhang et al. 2022). To our knowledge, this is the first report of natural infection of ToMMV in T. kirilowii as well as its natural infection on Cucurbitaceae plants.

7.
Plant Dis ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157094

ABSTRACT

Wheat (Triticum aestivum L.) is an important cereal crop widely cultivated worldwide. Viral disease is a major threat to wheat yield. In April 2022, fifteen winter wheat plants with yellowing and stunting symptoms were collected from wheat fields in Jingjiang, Jiangsu Province. Total RNA of each sample was extracted, and RT-PCR was performed using two pairs of degenerate luteovirus primers Lu-F (5'-CCAGTGGTTRTGGTC-3') and Lu-R (5'-GTCTACCTATTTGG-3'), Leu-F (5'-GCTCTAGAATTGTTAATGARTACGGTCG-3') and Leu-R (5'-CACGCGTCN ACCTATTTNGGRTTNTG-3'). Amplicons with the expected size were obtained from 10 of the 15 samples (using primers Lu-F/Lu-R) and 3 of the 15 samples (using primers Leu-F/Leu-R), respectively. These amplicons were cloned into the pDM18-T vector (TaKaRa) for sequencing. Blastn alignment showed that 10 amplicons (531 bp) from Lu-F/Lu-R primers were essentially identical to one another, which shared 99.62% nucleotide sequence identity to barley yellow dwarf virus-PAV (BYDV-PAV) isolate GJ1 from Avena sativa in South Korea (LC550014). Three amplicons (635 bp) from Leu-F/Leu-R primers had 99.68% nucleotide identity to the corresponding part of an isolate of beet western yellows virus (BWYV) from saffron (Crocus sativus) in China (MG002646). Among the 13 virus-positive samples, none were co-infected by BYDV-PAV and BWYV. Then, amplification using BWYV-specific primers (BWYV-F: 5'-TGCTCCGGTTTTGACTGGAGTGT-3', BWYV-R: 5'-CGTCTACCT ATTTTGGGTTGTGG-3') generated a 1409 bp product, corresponding to the partial sequence of the viral RNA-dependent RNA polymerase gene and complete sequence of the coat protein (CP) gene. The sequences (GenBank accession no. ON924175) of amplicons from 3 BWYV samples were identical to one another, which shared 98.41% nucleotide identity to BWYV isolate Hs from Japanese hop (Humulus scandens) in China (KC210049). The predicted coat protein of the BWYV wheat isolate had 99.51% nucleotide and 100% amino acid identity to BWYV isolate Hs. BWYV infection on wheat samples was also verified by dot-nucleic acid hybridization using a digoxigenin-labeled cDNA probe against the CP gene, as described previously (Liu et al. 2007). Further, RNA-positive samples were tested by enzyme-linked immunosorbent assay (ELISA) using the ELISA reagent kit for BWYV (Catalog No. KS19341, Shanghai Keshun Biotech, Shanghai, China); test results were also BWYV-positive, confirming that both BWYV nucleic and coat protein are present in these wheat samples. BYDV-PAV is a common wheat virus (Chay et al. 1996), while BWYV has never been reported to infect wheat. BWYV, an aphid-transmitted virus belonging to the Polerovirus genus, has an extensive host range, including over 150 plant species from 23 dicotyledonous families, such as Beta vulgaris, Spinacia oleracea, Lactuca sativa, and Brassica oleracea var. italica (Duffus 1964, 1973; Russell 1965; Beuve et al. 2008). In addition, BWYV was reported to infect a monocotyledonous plant, Crocus sativus (Iridaceae) (Zheng et al. 2018). To our knowledge, this is the first report of BWYV in wheat or any other Gramineae crop. The result also implies that BWYV has a potential risk to cereal crops in the field.

8.
JCO Precis Oncol ; 7: e2200463, 2023 03.
Article in English | MEDLINE | ID: mdl-36996375

ABSTRACT

PURPOSE: To investigate the efficacy of PD-1/PD-L1 inhibitors plus chemotherapy versus anti-PD-1/PD-L1 monotherapy in advanced microsatellite instability (MSI)/mismatch repair-deficient (dMMR) gastrointestinal cancers. METHODS: We retrospectively recruited patients with MSI/dMMR gastrointestinal cancer who received anti-PD-1/PD-L1 with or without chemotherapy and compared objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) of PD-1/PD-L1 inhibitor plus chemotherapy (chemo-anti-PD-1/PD-L1 group) and PD-1/PD-L1 inhibitor alone (anti-PD-1/PD-L1 group). Propensity score-based overlap weighting analysis was conducted to adjust the baseline covariable imbalance. Sensitivity analysis was performed to confirm the stability of the results by propensity score matching and multivariable Cox and logistic regression models. RESULTS: A total of 256 patients were eligible, with 68 and 188 receiving chemo-anti-PD-1/PD-L1 and anti-PD-1/PD-L1, respectively. The chemo-anti-PD-1/PD-L1 group showed significant improvements versus the anti-PD-1/PD-L1 group in ORR (61.8% v 38.8%; P = .001), DCR (92.6% v 74.5%; P = .002), PFS (median PFS [mPFS], not reached [NR] v 27.9 months; P = .004), and OS (median OS [mOS], NR v NR; P = .014). After overlap weighting, the improvements tended to be more significant with chemo-anti-PD-1/PD-L1 versus anti-PD-1/PD-L1 in ORR (62.5% v. 38.3%; P < .001), DCR (93.8% v 74.2%; P < .001), PFS (mPFS, NR v 26.0 months; P = .004), and OS (mOS, NR v NR; P = .010). These results were solidified through sensitivity analysis. CONCLUSION: Chemo-anti-PD-1/PD-L1 is superior to anti-PD-1/PD-L1 in MSI/dMMR gastrointestinal cancers with improved efficacy.


Subject(s)
Colorectal Neoplasms , Immune Checkpoint Inhibitors , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , B7-H1 Antigen/genetics , Retrospective Studies , Microsatellite Instability , Colorectal Neoplasms/drug therapy
9.
JAMA ; 328(12): 1223-1232, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36166026

ABSTRACT

Importance: Programmed cell death ligand 1 inhibitors combined with chemotherapy has changed the approach to first-line treatment in patients with extensive-stage small cell lung cancer (SCLC). It remained unknown whether adding a programmed cell death 1 (PD-1) inhibitor to chemotherapy provided similar or better benefits in patients with extensive-stage SCLC, which would add evidence on the efficacy of checkpoint inhibitors in the treatment of extensive-stage SCLC. Objective: To evaluate the efficacy and adverse event profile of the PD-1 inhibitor serplulimab plus chemotherapy compared with placebo plus chemotherapy as first-line treatment in patients with extensive-stage SCLC. Design, Setting, and Participants: This international, double-blind, phase 3 randomized clinical trial (ASTRUM-005) enrolled patients at 114 hospital sites in 6 countries between September 12, 2019, and April 27, 2021. Of 894 patients who were screened, 585 with extensive-stage SCLC who had not previously received systemic therapy were randomized. Patients were followed up through October 22, 2021. Interventions: Patients were randomized 2:1 to receive either 4.5 mg/kg of serplulimab (n = 389) or placebo (n = 196) intravenously every 3 weeks. All patients received intravenous carboplatin and etoposide every 3 weeks for up to 12 weeks. Main Outcomes and Measures: The primary outcome was overall survival (prespecified significance threshold at the interim analysis, 2-sided P < .012). There were 13 secondary outcomes, including progression-free survival and adverse events. Results: Among the 585 patients who were randomized (mean age, 61.1 [SD, 8.67] years; 104 [17.8%] women), 246 (42.1%) completed the trial and 465 (79.5%) discontinued study treatment. All patients received study treatment and were included in the primary analyses. As of the data cutoff (October 22, 2021) for this interim analysis, the median duration of follow-up was 12.3 months (range, 0.2-24.8 months). The median overall survival was significantly longer in the serplulimab group (15.4 months [95% CI, 13.3 months-not evaluable]) than in the placebo group (10.9 months [95% CI, 10.0-14.3 months]) (hazard ratio, 0.63 [95% CI, 0.49-0.82]; P < .001). The median progression-free survival (assessed by an independent radiology review committee) also was longer in the serplulimab group (5.7 months [95% CI, 5.5-6.9 months]) than in the placebo group (4.3 months [95% CI, 4.2-4.5 months]) (hazard ratio, 0.48 [95% CI, 0.38-0.59]). Treatment-related adverse events that were grade 3 or higher occurred in 129 patients (33.2%) in the serplulimab group and in 54 patients (27.6%) in the placebo group. Conclusions and Relevance: Among patients with previously untreated extensive-stage SCLC, serplulimab plus chemotherapy significantly improved overall survival compared with chemotherapy alone, supporting the use of serplulimab plus chemotherapy as the first-line treatment for this patient population. Trial Registration: ClinicalTrials.gov Identifier: NCT04063163.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carboplatin/adverse effects , Double-Blind Method , Etoposide/adverse effects , Female , Humans , Immune Checkpoint Inhibitors , Ligands , Lung Neoplasms/drug therapy , Male , Middle Aged , Programmed Cell Death 1 Receptor , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/etiology
10.
Pest Manag Sci ; 78(12): 5325-5333, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36039706

ABSTRACT

BACKGROUND: Plant viruses transmitted by arthropod vectors threaten crop health worldwide. Rice stripe virus (RSV) is one of the most important rice viruses in East Asia and is transmitted by the small brown planthopper (SBPH). Previously, it was demonstrated that the viral glycoprotein NSvs2-N could mediate RSV infection of the vector midgut. Therefore, NSvc2-N protein could potentially be used to reduce RSV transmission by competitively blocking midgut receptors. RESULTS: Here, we report that transgenic rice plants expressing viral glycoprotein can interfere with RSV acquisition and transmission by SBPH. The soluble fraction (30-268 amino acids, designated NSvs2-NS ) of NSvs2-N was transformed into rice calli, which produced plants harboring the exogenous gene. When SBPH was fed on transgenic plants prior to RSV-infected rice (sequential feeding) and when insects were fed on RSV-infected transgenic plants (concomitant feeding), virus acquisition by the insect vector was inhibited, and subsequent viral titers were reduced. Immunofluorescence labeling also indicated that viral infection of the insect midgut was inhibited after SBPH was fed on transgenic plants. The system by which RSV infected insect cells in vitro was used to corroborate the role of NSvc2-NS in reducing viral infection. After the cells were incubated with transgenic rice sap, the virus infection rate of the cells decreased significantly, and viral accumulation in the cells was lower than that in the control group. CONCLUSION: These results demonstrated the negative effect of NSvs2-NS transgenic plants on RSV transmission by insect vectors, which provides a novel and effective way to control plant viral diseases. © 2022 Society of Chemical Industry.


Subject(s)
Hemiptera , Oryza , Tenuivirus , Animals , Tenuivirus/genetics , Hemiptera/genetics , Insect Vectors , Insecta , Glycoproteins , Plant Diseases , Oryza/genetics
11.
J Thorac Oncol ; 17(10): 1205-1215, 2022 10.
Article in English | MEDLINE | ID: mdl-35659581

ABSTRACT

INTRODUCTION: Limertinib (ASK120067) is a newly developed third-generation EGFR tyrosine kinase inhibitor targeting both sensitizing EGFR and EGFR Thr790Met (T790M) mutations. This study aimed to evaluate the efficacy and safety of limertinib in patients with locally advanced or metastatic EGFR T790M-mutated NSCLC. METHODS: This is a single-arm, open-label, phase 2b study conducted at 62 hospitals across the People's Republic of China. Patients with locally advanced or metastatic NSCLC with centrally confirmed EGFR T790M mutations in tumor tissue or blood plasma who progressed after first- or second-generation EGFR tyrosine kinase inhibitors or with primary EGFR T790M mutations were enrolled. Patients received limertinib 160 mg orally twice daily until disease progression or unacceptable toxicity. The primary end point was objective response rate (ORR) assessed by independent review committee per the Response Evaluation Criteria in Solid Tumors version 1.1. Secondary end points included disease control rate, progression-free survival (PFS), duration of response (DoR), overall survival, and safety. Safety was assessed according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03. RESULTS: From July 16, 2019, to March 10, 2021, a total of 301 patients were enrolled and started the treatment of limertinib. All patients entered the full analysis set and safety set. By the data cutoff date on September 9, 2021, 76 (25.2%) remained on treatment. The median follow-up time was 10.4 months (range: 0.3-26.3). On the basis of full analysis set, the independent review committee-assessed ORR was 68.8% (95% confidence interval [CI]: 63.2%-74.0%) and disease control rate was 92.4% (95% CI: 88.8%-95.1%). The median PFS was 11.0 months (95% CI: 9.7-12.4), median DoR was 11.1 months (95% CI: 9.6-13.8), and median OS was not reached (95% CI 19.7 months-not evaluable). Objective responses were achieved across all prespecified subgroups. For 99 patients (32.9%) with central nervous system (CNS) metastases, the ORR was 64.6% (95% CI: 54.4%-74.0%), median PFS was 9.7 months (95% CI: 5.9-11.6), and median DoR was 9.6 months (95% CI: 8.1-15.2). For 41 patients who had assessable CNS lesion, the confirmed CNS-ORR was 56.1% (95% CI: 39.7%-71.5%) and median CNS-PFS was 10.6 months (95% CI: 5.6-not evaluable). In safety set, 289 patients (96.0%) experienced at least one treatment-related adverse event (TRAE), with the most common being diarrhea (81.7%), anemia (32.6%), rash (29.9%), and anorexia (28.2%). Grade ≥3 TRAEs occurred in 104 patients (34.6%), with the most common including diarrhea (13.0%), hypokalemia (4.3%), anemia (4.0%), and rash (3.3%). TRAEs leading to dose interruption and dose discontinuation occurred in 24.6% and 2% of patients, respectively. No TRAE leading to death occurred. CONCLUSIONS: Limertinib (ASK120067) was found to have promising efficacy and an acceptable safety profile for the treatment of patients with locally advanced or metastatic EGFR T790M-mutated NSCLC. CLINICAL TRIAL INFORMATION: NCT03502850.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Exanthema , Lung Neoplasms , Acrylamides , Aniline Compounds/therapeutic use , Antineoplastic Agents/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Diarrhea/chemically induced , ErbB Receptors , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/adverse effects
12.
J Clin Oncol ; 40(27): 3162-3171, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35580297

ABSTRACT

PURPOSE: Aumolertinib (formerly almonertinib; HS-10296) is a novel third-generation epidermal growth factor receptor tyrosine kinase inhibitor approved in China. This double-blind phase III trial evaluated the efficacy and safety of aumolertinib compared with gefitinib as a first-line treatment for locally advanced or metastatic EGFR-mutated non-small-cell lung cancer (NSCLC; ClinicalTrials.gov identifier: NCT03849768). METHODS: Patients at 53 sites in China were randomly assigned 1:1 to receive either aumolertinib (110 mg) or gefitinib (250 mg) once daily. The primary end point was progression-free survival (PFS) per investigator assessment. RESULTS: A total of 429 patients who were naïve to treatment for locally advanced or metastatic NSCLC were enrolled. PFS was significantly longer with aumolertinib compared with gefitinib (hazard ratio, 0.46; 95% CI, 0.36 to 0.60; P < .0001). The median PFS with aumolertinib was 19.3 months (95% CI, 17.8 to 20.8) versus 9.9 months with gefitinib (95% CI, 8.3 to 12.6). Objective response rate and disease control rate were similar in the aumolertinib and gefitinib groups (objective response rate, 73.8% and 72.1%, respectively; disease control rate, 93.0% and 96.7%, respectively). The median duration of response was 18.1 months (95% CI, 15.2 to not applicable) with aumolertinib versus 8.3 months (95% CI, 6.9 to 11.1) with gefitinib. Adverse events of grade ≥ 3 severity (any cause) were observed in 36.4% and 35.8% of patients in the aumolertinib and gefitinib groups, respectively. Rash and diarrhea (any grade) were observed in 23.4% and 16.4% of patients who received aumolertinib compared with 41.4% and 35.8% of those who received gefitinib, respectively. CONCLUSION: Aumolertinib is a well-tolerated third-generation epidermal growth factor receptor tyrosine kinase inhibitor that could serve as a treatment option for EGFR-mutant NSCLC in the first-line setting.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Acrylamides , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Disease-Free Survival , ErbB Receptors/genetics , Exons , Gefitinib/therapeutic use , Humans , Indoles , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/adverse effects , Pyrimidines , Quinazolines/therapeutic use , Small Cell Lung Carcinoma/drug therapy
13.
Cell Transplant ; 31: 9636897221094244, 2022.
Article in English | MEDLINE | ID: mdl-35506155

ABSTRACT

Use of chimeric antigen receptors (CARs), as an immune cell therapy, has generated excellent clinical outcomes against hematologic tumors in recent years. Among them, the CAR-NK (natural killer) therapy has shown better efficacy, and less toxicity, than chimeric antigen receptor T-cell (CAR-T) therapy. In our phase II clinical trials, administering chimeric costimulatory converting receptor (CCCR)-NK92 cells on advanced non-small cell lung cancer patients proved efficacious in cell and animal experiments. However, we observed occurrence of cytokine release syndrome (CRS), a rare and unexpected side effect, never reported before during CAR-NK therapy. Here, we provide a detailed report of the patient's case, emphasize on the need to pay attention to CRS in NK cell therapy, and suggest improvements that will minimize potential toxicity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Receptors, Chimeric Antigen , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Cytokine Release Syndrome , Humans , Killer Cells, Natural , Lung Neoplasms/drug therapy , Receptors, Chimeric Antigen/therapeutic use
14.
BMJ ; 377: e068714, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440464

ABSTRACT

OBJECTIVE: To evaluate sintilimab versus placebo in combination with chemotherapy (cisplatin plus paclitaxel or cisplatin plus 5-fluorouracil) as first line treatment of unresectable locally advanced, recurrent, or metastatic oesophageal squamous cell carcinoma. DESIGN: Multicentre, randomised, double blind, phase 3 trial. SETTING: 66 sites in China and 13 sites outside of China between 14 December 2018 and 9 April 2021. PARTICIPANTS: 659 adults (aged ≥18 years) with advanced or metastatic oesophageal squamous cell carcinoma who had not received systemic treatment. INTERVENTION: Participants were randomised 1:1 to receive sintilimab or placebo (3 mg/kg in patients weighing <60 kg or 200 mg in patients weighing ≥60 kg) in combination with cisplatin 75 mg/m2 plus paclitaxel 175 mg/m2 every three weeks. The trial was amended to allow investigators to choose the chemotherapy regimen: cisplatin plus paclitaxel or cisplatin plus 5-fluorouracil (800 mg/m2 continuous infusion on days 1-5). MAIN OUTCOME MEASURES: Overall survival in all patients and in patients with combined positive scores of ≥10 for expression of programmed cell death ligand 1. RESULTS: 659 patients were randomly assigned to sintilimab (n=327) or placebo (n=332) with chemotherapy. 616 of 659 patients (93%) received sintilimab or placebo in combination with cisplatin plus paclitaxel and 43 of 659 patients (7%) received sintilimab or placebo in combination with cisplatin plus 5-fluorouracil. At the interim analysis, sintilimab with chemotherapy showed better overall survival compared with placebo and chemotherapy in all patients (median 16.7 v 12.5 months, hazard ratio 0.63, 95% confidence interval 0.51 to 0.78, P<0.001) and in patients with combined positive scores of ≥10 (17.2 v 13.6 months, 0.64, 0.48 to 0.85, P=0.002). Sintilimab and chemotherapy significantly improved progression free survival compared with placebo and chemotherapy in all patients (7.2 v 5.7 months, 0.56, 0.46 to 0.68, P<0.001) and in patients with combined positive scores of ≥10 (8.3 v 6.4 months, 0.58, 0.45 to 0.75, P<0.001). Adverse events related to treatment occurred in 321 of 327 patients (98%) in the sintilimab-chemotherapy group versus 326 of 332 (98%) patients in the placebo-chemotherapy group. Rates of adverse events related to treatment, grade ≥3, were 60% (196/327) and 55% (181/332) in the sintilimab-chemotherapy and placebo-chemotherapy groups, respectively. CONCLUSIONS: Compared with placebo, sintilimab in combination with cisplatin plus paclitaxel showed significant benefits in overall survival and progression free survival as first line treatment in patients with advanced or metastatic oesophageal squamous cell carcinoma. Similar benefits of sintilimab with cisplatin plus 5-fluorouracil seem promising. TRIAL REGISTRATION: ClinicalTrials.gov NCT03748134.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Adolescent , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cisplatin/therapeutic use , Double-Blind Method , Esophageal Neoplasms/drug therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Fluorouracil/therapeutic use , Humans , Paclitaxel/therapeutic use
15.
J Virol Methods ; 299: 114282, 2022 01.
Article in English | MEDLINE | ID: mdl-34648823

ABSTRACT

Tomato chlorosis virus (ToCV), a species of single-stranded RNA virus belonging to the Crinivirus genus, and Tomato yellow leaf curl virus (TYLCV), a species of single-stranded circular DNA virus belonging to the Begomovirus genus, are two major emerging viruses transmitted by whiteflies and are causing huge losses to tomato production worldwide. To facilitate the simultaneous detection of both viruses in co-infected plants for disease control, a duplex reverse-transcription PCR assay was developed. The assay used three primers, a degenerate reverse primer targeting a conserved region of TYLCV and the RNA2 of ToCV, and two virus-specific forward primers targeting the minor coat protein gene of ToCV and the C3 gene of TYLCV, respectively, to amplify a 762-bp and a 338-bp fragment from ToCV and TYLCV, respectively, in a single reaction. The concentration of the primers, annealing temperature and amplification cycles used in the assay were optimized, and the sensitivity of the assay was assessed. Using this assay, 150 tomato leaf samples collected from the field during 2018 were tested. The results showed that both viruses could be detected simultaneously in co-infected field samples. The assay should benefit the rapid detection of these two viruses in tomato crops and would facilitate early warning of infections for the control of the two virus diseases.


Subject(s)
Begomovirus , Crinivirus , Solanum lycopersicum , Begomovirus/genetics , Crinivirus/genetics , Plant Diseases , Reverse Transcriptase Polymerase Chain Reaction
16.
Insects ; 12(12)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34940195

ABSTRACT

Transient receptor potential mucolipin (TRPML) protein in flies plays a pivotal role in Ca2+ ions release, resulting in membrane trafficking, autophagy and ion homeostasis. However, to date, the characterization of TRPML in agricultural pests remains unknown. Here, we firstly reported the TRPML of a destructive pest of gramineous crops, Laodelphax striatellus. The L. striatellus TRPML (Ls-TRPML) has a 1818 bp open reading frame, encoding 605 amino acid. TRPML in agricultural pests is evolutionarily conserved, and the expression of Ls-TRPML is predominately higher in the ovary than in other organs of L. striatellus at the transcript and protein level. The Bac-Bac system showed that Ls-TRPML localized in the plasma membrane, nuclear membrane and nucleus and co-localized with lysosome in Spodoptera frugiperda cells. The immunofluorescence microscopy analysis showed that Ls-TRPML localized in the cytoplasm and around the nuclei of the intestine cells or ovary follicular cells of L. striatellus. The results from the lipid-binding assay revealed that Ls-TRPML strongly bound to phosphatidylinositol-3,5-bisphosphate, as compared with other phosphoinositides. Overall, our results helped is identify and characterize the TRPML protein of L. striatellus, shedding light on the function of TRPML in multiple cellular processes in agricultural pests.

17.
Viruses ; 13(10)2021 10 18.
Article in English | MEDLINE | ID: mdl-34696530

ABSTRACT

Rice black-streaked dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is a serious constraint in Chinese rice production. Breeding disease-resistant varieties through multigene aggregation is considered an effective way to control diseases, but few disease-resistant resources have been characterized thus far. To develop novel resources for resistance to RBSDV through CRISPR/Cas9-mediated genome editing, a guide RNA sequence targeting exon 1 of eIF4G was designed and cloned into a binary vector, pHUE401. This recombinant vector was used to generate mutations in the rice cultivar Nipponbare via Agrobacterium-mediated transformation. This approach produced heritable homozygous mutations in the transgene-free T1 generation. Sequence analysis of the eIF4G target region from T1 transgenic plants identified 3 bp deletion mutants, and analysis of the predicted amino acid sequence identified one amino acid deletion in mutants that possess near full-length eIF4G. Furthermore, our data suggest that eIF4G may plays an important role in rice normal development, as there were no eIF4G knock-out homozygous mutants in T1 generation plants. When homozygous mutant lines were inoculated with RBSDV, they exhibited enhanced tolerance to virus infection, without visibly affecting plant growth and development. However, the eif4g mutant plants showed the same sensitivity to rice stripe virus (RSV) infection as wild-type plants. Notably, the wild-type and mutant N-termini of eIF4G interacted directly with RBSDV P8 in yeast and in planta. Additionally, compared to wild-type plants, the eIF4G transcript level was reduced twofold in the mutant plants. These results indicate that site-specific mutation of rice eIF4G successfully conferred partial resistance specific to RBSDV associated with less transcription of eIF4G in mutants. Therefore, this study demonstrates that the novel eIF4G alleles generated by CRISPR/Cas9 represent valuable disease-resistant resources that can be used to develop RBSDV-resistant varieties.


Subject(s)
Eukaryotic Initiation Factor-4G/genetics , Oryza/genetics , Plant Viruses/genetics , Disease Resistance/genetics , Eukaryotic Initiation Factor-4G/metabolism , Food, Genetically Modified , Gene Editing/methods , Oryza/virology , Plant Breeding/methods , Plant Diseases/virology , Plant Viruses/pathogenicity , Plants, Genetically Modified/virology
18.
J Virol Methods ; 298: 114277, 2021 12.
Article in English | MEDLINE | ID: mdl-34492235

ABSTRACT

Tobacco mild green mosaic virus (TMGMV), a member species of the genus Tobamovirus, infects pepper (Capsicum annuum) and a number of other economically important species in the Solanaceae family. TMGMV infections had seriously impacted pepper production worldwide, including China. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to detect TMGMV in pepper field samples and seed. This assay was based on four primers that matched to six sequences in the C-terminal region of the TMGMV genome. RT-LAMP assay could detect the presence of the virus in 3.0 × 10-7 µg of total RNA extract from pepper leaves, which was ten times more sensitive than the corresponding reverse-transcription polymerase chain reaction (RT-PCR) assay. This method specifically detected TMGMV but not the closely related species of the same genus Pepper mild mottle virus, Cucumber green mottle mosaic virus and Tomato mosaic virus. In addition, the use of SYBR Green I facilitated the detection of the TMGMV RT-LAMP products by the naked eye. These results indicated that the RT-LAMP assay was a simple, sensitive, specific and affordable diagnostic tool that has the potential to detect and monitor TMGMV infection in field samples.


Subject(s)
Nicotiana , Tobamovirus , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques/methods , Plant Diseases , Sensitivity and Specificity , Nicotiana/genetics , Tobamovirus/genetics
19.
PLoS Pathog ; 17(8): e1009844, 2021 08.
Article in English | MEDLINE | ID: mdl-34398921

ABSTRACT

Geminiviruses cause serious symptoms and devastating losses in crop plants. With a circular, single-stranded DNA genome, geminiviruses multiply their genomic DNA in the nucleus, requiring the nuclear shuttling of viral proteins and viral genomic DNAs. Many host factors, acting as proviral or antiviral factors, play key roles in geminivirus infections. Here, we report the roles of a tomato glutaredoxin (GRX), SlGRXC6, in the infection of Tomato yellow leaf curl virus (TYLCV), a single-component geminivirus. The V2 protein of TYLCV specifically and preferentially interacts with SlGRXC6 among the 55-member tomato GRX family that are broadly involved in oxidative stress responses, plant development, and pathogen responses. We show that overexpressed SlGRXC6 increases the nuclear accumulation of V2 by inhibiting its nuclear export and, in turn, inhibits trafficking of the V1 protein and viral genomic DNA. Conversely, the silenced expression of SlGRXC6 leads to an enhanced susceptibility to TYLCV. SlGRXC6 is also involved in symptom development as we observed a positive correlation where overexpression of SlGRXC6 promotes while knockdown of SlGRXC6 expression inhibits plant growth. We further showed that SlGRXC6 works with SlNTRC80, a tomato NADPH-dependent thioredoxin reductase, to regulate plant growth. V2 didn't interact with SlNTRC80 but competed with SlNTR80 for binding to SlGRXC6, suggesting that the V2-disrupted SlGRXC6-SlNTRC80 interaction is partially responsible for the virus-caused symptoms. These results suggest that SlGRXC6 functions as a host restriction factor that inhibits the nuclear trafficking of viral components and point out a new way to control TYLCV infection by targeting the V2-SlGRXC6 interaction.


Subject(s)
Begomovirus/physiology , Cell Nucleus/metabolism , Plant Diseases/immunology , Plant Proteins/metabolism , Solanum lycopersicum/immunology , Viral Proteins/metabolism , Virus Replication , Active Transport, Cell Nucleus , Glutaredoxins/genetics , Glutaredoxins/metabolism , Solanum lycopersicum/virology , Plant Diseases/virology , Plant Proteins/genetics , Viral Proteins/genetics
20.
Viruses ; 13(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-34206030

ABSTRACT

Tomato mottle mosaic virus (ToMMV) is a noteworthy virus which belongs to the Virgaviridae family and causes serious economic losses in tomato. Here, we isolated and cloned the full-length genome of a ToMMV Chinese isolate (ToMMV-LN) from a naturally infected tomato (Solanum lycopersicum L.). Sequence analysis showed that ToMMV-LN contains 6399 nucleotides (nts) and is most closely related to a ToMMV Mexican isolate with a sequence identity of 99.48%. Next, an infectious cDNA clone of ToMMV was constructed by a homologous recombination approach. Both the model host N. benthamiana and the natural hosts tomato and pepper developed severe symptoms upon agroinfiltration with pToMMV, which had a strong infectivity. Electron micrographs indicated that a large number of rigid rod-shaped ToMMV virions were observed from the agroinfiltrated N. benthamiana leaves. Finally, our results also confirmed that tomato plants inoculated with pToMMV led to a high infection rate of 100% in 4-5 weeks post-infiltration (wpi), while pepper plants inoculated with pToMMV led to an infection rate of 40-47% in 4-5 wpi. This is the first report of the development of a full-length infectious cDNA clone of ToMMV. We believe that this infectious clone will enable further studies of ToMMV genes function, pathogenicity and virus-host interaction.


Subject(s)
Cloning, Molecular , DNA, Complementary , Genome, Viral , Tobamovirus/genetics , Amino Acid Sequence , Base Sequence , Disease Susceptibility , Genomics/methods , Phenotype , Phylogeny , Plant Diseases/virology , Sequence Analysis, DNA , Tobamovirus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...